Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34314438

RESUMO

An array of isoforms of the nuclear estrogen receptor alpha (ER-α) protein contribute to heterogeneous response in breast cancer (BCa); yet, a single-cell analysis tool that distinguishes the full-length ER-α66 protein from the activation function-1 deficient ER-α46 isoform has not been reported. Specific detection of protein isoforms is a gap in single-cell analysis tools, as the de facto standard immunoassay requires isoform-specific antibody probes. Consequently, to scrutinize hormone response heterogeneity among BCa tumor cells, we develop a precision tool to specifically measure ER-α66, ER- α46, and eight ER-signaling proteins with single-cell resolution in the highly hetero-clonal MCF-7 BCa cell line. With a literature-validated pan-ER immunoprobe, we distinguish ER-α66 from ER-α46 in each individual cell. We identify ER-α46 in 5.5% of hormone-sensitive (MCF-7) and 4.2% of hormone-insensitive (MDA-MB-231) BCa cell lines. To examine whether the single-cell immunoblotting can capture cellular responses to hormones, we treat cells with tamoxifen and identify different sub-populations of ER-α46: (i) ER-α46 induces phospho-AKT at Ser473, (ii) S6-ribosomal protein, an upstream ER target, activates both ER-α66 and ER-α46 in MCF-7 cells, and (iii) ER-α46 partitions MDA-MB-231 subpopulations, which are responsive to tamoxifen. Unlike other single-cell immunoassays, multiplexed single-cell immunoblotting reports-in the same cell-tamoxifen effects on ER signaling proteins and on distinct isoforms of the ER-α protein.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Análise de Célula Única/métodos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Immunoblotting , Fosforilação/efeitos dos fármacos , Análise de Componente Principal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Análise de Célula Única/instrumentação , Tamoxifeno/farmacologia
2.
Mol Cancer Ther ; 8(2): 333-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19190118

RESUMO

We report the discovery of a new prodrug, 6-chloro-9-nitro-5-oxo-5H-benzo(a)phenoxazine (CNOB). This prodrug is efficiently activated by ChrR6, the highly active prodrug activating bacterial enzyme we have previously developed. The CNOB/ChrR6 therapy was effective in killing several cancer cell lines in vitro. It also efficiently treated tumors in mice with up to 40% complete remission. 9-Amino-6-chloro-5H-benzo(a)phenoxazine-5-one (MCHB) was the only product of CNOB reduction by ChrR6. MCHB binds DNA; at nonlethal concentration, it causes cell accumulation in the S phase, and at lethal dose, it induces cell surface Annexin V and caspase-3 and caspase-9 activities. Further, MCHB colocalizes with mitochondria and disrupts their electrochemical potential. Thus, killing by CNOB involves MCHB, which likely induces apoptosis through the mitochondrial pathway. An attractive feature of the CNOB/ChrR6 regimen is that its toxic product, MCHB, is fluorescent. This feature proved helpful in in vitro studies because simple fluorescence measurements provided information on the kinetics of CNOB activation within the cells, MCHB killing mechanism, its generally efficient bystander effect in cells and cell spheroids, and its biodistribution. The emission wavelength of MCHB also permitted its visualization in live animals, allowing noninvasive qualitative imaging of MCHB in mice and the tumor microenvironment. This feature may simplify exploration of barriers to the penetration of MCHB in tumors and their amelioration.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Nitrorredutases/uso terapêutico , Oxazinas/uso terapêutico , Pró-Fármacos/uso terapêutico , Animais , Anexina A5/metabolismo , Antineoplásicos/farmacologia , Efeito Espectador/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Fluorescência , Humanos , Cinética , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Oxazinas/farmacologia , Pró-Fármacos/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Resultado do Tratamento
3.
J Biol Chem ; 281(23): 16025-33, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16567802

RESUMO

Antitumor antibiotic chromoproteins such as neocarzinostatin involve a labile toxin that is tightly bound by a protective protein with very high affinity but must also be freed to exert its function. Contrary to the prevalent concept of ligand release, we established that toxin release from neocarzinostatin requires no major backbone conformational changes. We report, herein, that subtle changes in the side chains of specific amino acid residues are adequate to gate the release of chromophore. A recombinant wild type aponeocarzinostatin and its variants mutated around the opening of the chromophore binding cleft are employed to identify specific side chains likely to affect chromophore release. Preliminary, biophysical characterization of mutant apoproteins by circular dichroism and thermal denaturation indicate that the fundamental structural characteristics of wild type protein are conserved in these mutants. The chromophore reconstitution studies further show that all mutants are able to bind chromophore efficiently with similar complex structures. NMR studies on 15N-labeled mutants also suggest the intactness of binding pocket structure. Kinetic studies of chromophore release monitored by time course fluorescence and quantitative high pressure liquid chromatography analyses show that the ligand release rate is significantly enhanced only in Phe78 mutants. The extent of DNA cleavage in vitro corresponds well to the rate of chromophore release. The results provide the first clear-cut indication of how toxin release can be controlled by a specific side chain of a carrier protein.


Assuntos
Antibacterianos/metabolismo , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência
4.
BMC Cell Biol ; 3: 19, 2002 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-12139770

RESUMO

BACKGROUND: Cortical myosin-II filaments in Dictyostelium discoideum display enrichment in the posterior of the cell during cell migration, and in the cleavage furrow during cytokinesis. Filament assembly in turn is regulated by phosphorylation in the tail region of the myosin heavy chain (MHC). Early studies have revealed one enzyme, MHCK-A, which participates in filament assembly control, and two other structurally related enzymes, MHCK-B and -C. In this report we evaluate the biochemical properties of MHCK-C, and using fluorescence microscopy in living cells we examine the localization of GFP-labeled MHCK-A, -B, and -C in relation to GFP-myosin-II localization. RESULTS: Biochemical analysis indicates that MHCK-C can phosphorylate MHC with concomitant disassembly of myosin II filaments. In living cells, GFP-MHCK-A displayed frequent enrichment in the anterior of polarized migrating cells, and in the polar region but not the furrow during cytokinesis. GFP-MHCK-B generally displayed a homogeneous distribution. In migrating cells GFP-MHCK-C displayed posterior enrichment similar to that of myosin II, but did not localize with myosin II to the furrow during the early stage of cytokinesis. At the late stage of cytokinesis, GFP-MHCK-C became strongly enriched in the cleavage furrow, remaining there through completion of division. CONCLUSION: MHCK-A, -B, and -C display distinct cellular localization patterns suggesting different cellular functions and regulation for each MHCK isoform. The strong localization of MHCK-C to the cleavage furrow in the late stages of cell division may reflect a mechanism by which the cell regulates the progressive removal of myosin II as furrowing progresses.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Polaridade Celular/fisiologia , Dictyostelium/enzimologia , Trifosfato de Adenosina/farmacologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Divisão Celular/fisiologia , Dictyostelium/citologia , Dictyostelium/crescimento & desenvolvimento , Proteínas de Fluorescência Verde , Interfase/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Magnésio/farmacologia , Microscopia de Fluorescência , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas de Protozoários , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
5.
J Am Chem Soc ; 122(14): 3399-3412, 2000 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25152534

RESUMO

The oxygen-evolving complex of Photosystem II in plants and cyanobacteria catalyzes the oxidation of two water molecules to one molecule of dioxygen. A tetranuclear Mn complex is believed to cycle through five intermediate states (S0-S4) to couple the four-electron oxidation of water with the one-electron photochemistry occurring at the Photosystem II reaction center. We have used X-ray absorption spectroscopy to study the local structure of the Mn complex and have proposed a model for it, based on studies of the Mn K-edges and the extended X-ray absorption fine structure of the S1 and S2 states. The proposed model consists of two di-µ-oxo-bridged binuclear Mn units with Mn-Mn distances of ~2.7 Å that are linked to each other by a mono-µ-oxo bridge with a Mn-Mn separation of ~3.3 Å. The Mn-Mn distances are invariant in the native S1 and S2 states. This report describes the application of X-ray absorption spectroscopy to S3 samples created under physiological conditions with saturating flash illumination. Significant changes are observed in the Mn-Mn distances in the S3 state compared to the S1 and the S2 states. The two 2.7 Å Mn-Mn distances that characterize the di-µ-oxo centers in the S1 and S2 states are lengthened to ~2.8 and 3.0 Å in the S3 state, respectively. The 3.3 Å Mn-Mn and Mn-Ca distances also increase by 0.04-0.2 Å. These changes in Mn-Mn distances are interpreted as consequences of the onset of substrate/water oxidation in the S3 state. Mn-centered oxidation is evident during the S0→S1 and S1→S2 transitions. We propose that the changes in Mn-Mn distances during the S2→S3 transition are the result of ligand or water oxidation, leading to the formation of an oxyl radical intermediate formed at a bridging or terminal position. The reaction of the oxyl radical with OH-, H2O, or an oxo group during the subsequent S state conversion is proposed to lead to the formation of the O-O bond. Models that can account for changes in the Mn-Mn distances in the S3 state and the implications for the mechanism of water oxidation are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...